Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Appl Radiat Isot ; 176: 109895, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34419874

RESUMO

The accuracy of an out-of-field dose from an Elekta Synergy accelerator calculated using the X-ray Voxel Monte Carlo (XVMC) dose algorithm in the Monaco treatment planning system (TPS) for both low-energy (6 MV) and high-energy (15 MV) photons at cardiac implantable electronic device (CIED) depths was investigated through a comparison between MCNPX simulated out-of-field doses and measured out-of-field doses using three high spatial and sensitive active detectors. In addition, total neutron equivalent dose and fluence at CIED depths of a 15-MV dose from an Elekta Synergy accelerator were calculated, and the corresponding CIED relative neutron damage was quantified. The results showed that for 6-MV photons, the XVMC dose algorithm in Monaco underestimated out-of-field doses in all off-axis distances (average errors: -17% at distances X < 10 cm from the field edge and -31% at distances between 10 < X ≤ 16 cm from the field edge), with an increasing magnitude of underestimation for high-energy (15 MV) photons (up to 11%). According to the results, an out-of-field photon dose at a shallower CIED depth of 1 cm was associated with greater statistical uncertainty in the dose estimate compared to a CIED depth of 2 cm and clinical depth of 10 cm. Our results showed that the relative neutron damage at a CIED depth range for 15 MV photon is 36% less than that reported for 18 MV photon in the literature.


Assuntos
Coração , Nêutrons , Fótons , Próteses e Implantes , Dosagem Radioterapêutica , Algoritmos , Humanos , Método de Monte Carlo
2.
Phys Med ; 29(3): 304-11, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22575703

RESUMO

PURPOSE: The aim of this study is to report results of measurements of dose to the skin in vivo with radiochromic EBT films in treatments with helical tomotherapy. METHODS AND MATERIALS: In vivo measurements were performed by applying pieces of radiochromic films to the skin or to the inner side of thermoplastic mask before the treatment. The sites of treatment included scalp, brain, head and neck, cranio-spinal axis and lower limbs. Skin dosimetry was performed in a patient who experienced grade 3-4 acute side effects to the skin shortly after the first treatment sessions. For each patient we measured the setup errors using the daily MVCT acquired for image guidance of the treatment. EBT films were read with a flatbed Epson Expression scanner and images were processed with an in-house written routine. RESULTS: A total of 96 measurements of dose to the skin performed on 14 patients. The mean difference and standard error of the mean difference between measured and TPS-calculated dose was -9.2% ± 2.6% for all treatments, -6.6% ± 2.6% for head and neck treatments. These differences were statistically significant at the 0.05 significance level (t-Student test). Planned dose and dose range in the region of measurements were not correlated with dose discrepancy. CONCLUSIONS: Radiochromic EBT films are suitable detectors for surface dose measurements in tomotherapy treatments. Results show that TPS overestimates dose to the skin measured with EBT radiochromic films. In vivo skin measurements with EBT films are a useful tool for quality assurance of tomotherapy treatments, as the treatment planning system may not give accurate dose values at the surface.


Assuntos
Dosimetria Fotográfica/métodos , Especificidade de Órgãos , Radioterapia de Intensidade Modulada/instrumentação , Fenômenos Fisiológicos da Pele/efeitos da radiação , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Medição de Risco , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA